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Abstract 

The method of a phase shift angle measurement using conditional averaging of delayed signal absolute value 
(CAAV) is presented in this paper. The input sinusoidal signal x(t) is without noise. White noise with normal 
distribution and band limited to low frequencies has been applied as disturbance of delayed sinusoidal signal z(t). 
Noise n(t) – N(0, σn) is added to the delayed signal - the noised and delayed signal z(t) is obtained. The phase 
angle shift is proportional to time location of  CAAV’s minimum (minimum of the characteristic of conditional 
averaging of delayed signal’s absolute value). The phase angle shift can be determined on the basis of 
conditional averaging value of elaborated algorithm. The characteristics of conditional average of delayed 
signal’s absolute value in the surrounding of the minimum of this function (the results of practical  investigations 
and theoretical calculation) are presented. The experimental variance of characteristic CAAV in surroundings of 
the minimum (obtained from practical investigations and calculation) is illustrated in the paper. The algorithms 
of conditional averaging have been elaborated and practically realized in the LabVIEW environment. 
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1. Introduction 

 
The most common disturbances encountered in the measurements of the phase angle shift 

of two sinusoidal signals result from the noise, harmonics and constants of the signal.  
Electronic phase-meters with the processing of phase angle shift into time intervals are 
susceptible to noise. Random disturbances affect the precision of zero passage of both runs 
and directly affect the measurement precision of the time segment which corresponds to the 
phase shift ϕ of two analysed signals [1]. In  real-world measurements  two cases are observed: 
both signals (input and output) are noised or only the delayed signal z(t) is noised. 

The models with random disturbances occur in the evaluation of the measurement accuracy 
of small angle for example in optical interferometers [2]. A correction of the measurement 
accuracy of the phase shift angle of noisy signals can be obtained by using algorithm methods 
including statistical analysis, e.g. determination of the cross correlation of two signals shifted 
by angle ϕ  [1, 3, 4], as well as algorithms which use conditional averaging of signals as 
proposed by the authors of the paper [5, 6, 7, 8]. 
 
2. Models of the estimated characteristics 
 

The signal processing model assumes that the original sinusoidal signal x(t) is free from 
disturbances, while the signal additively disturbed with noise n(t), characterized by the model 
N(0, σn), is the secondary signal y(t). The signal available for analysis is the signal 
z(t) = y(t) + n(t). The signal values occur in the moments t1 and t2 (τ = t2-t1). 
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The description of the signal processing is made with the following denotation: 

 ( ) ( )xm11 tcosXtx x ϕω +⋅== 1 , (1) 

 ( ) ( )ym11 tcosYty y ϕω +⋅== 1 , (2) 

 ( ) ( ) ( )xym2 tcosYtyty y ϕτωωτ +⋅+⋅==+= 121 , (3) 

where: ϕxy = ϕx - ϕy is the phase shift angle between signals x(t) and y(t), 

 ( )2tn n2 = , (4) 

 ( ) ( ) ( )222 tntytz z2 +== .  (5) 

The following relation is right for constant value of phase angle shift between signals  
x(t) and y(t): 
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The relation is unique in the set 0 - π and equal to: 
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The conditional probability density for the functional relation (7) is equal to: 
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The conditional probability density for the independent signals n(t) and x(t) is:  
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In such a case the conditional density of signal y(t) as phase-shifted and disturbed by noise 
n(t) can be determined with a conditional density convolution of the constituent signals: 
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When the threshold x1=0, the following occurs: 
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where: ( )0 sinm xyy Y= - w×t + f . 

In order to analyze the non-linear transformation of the signal z20 the following denotations 
are introduced: 
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The probability density of the absolute value of conditional signal z20 can be expressed by 
formula: 
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The conditional average value of the absolute value of signal z20 (CAAV) can be derived 
from the following expression: 
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The first integral, I1, can be calculated by introducing an auxiliary variable: 
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The calculations give the following result: 

 ( ) 2

2
0

2
001

22

1
n

y

n eyI σ

π
σηΦ

−

+




 += , (16) 

where: ( ) η
π

ηΦ
η η

de∫
−

=
0

2

0

2
0

2

1
is the Laplace function. 

The integral I2 can be calculated in a similar way: 
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When substituting with (16) and (17) to (14), the following expression for the CAAV is 
obtained: 
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The function Φ(η0) can be represented by a series: 
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where: ( )1231

2

+⋅⋅⋅⋅
=

k
T

k

k . 

When the values η0 are low and the only first term of the series is used, the model of linear 
approximation is obtained: 
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Following further reductive transformations of the expression (18) using the formulas (11) 
and (15), the result is the relation for the conditional average value in the direct 
neighbourhood of its minimum: 
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At the minimum point of the characteristic ( )τ2w  for η0 = 0: 
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At the minimum point ( )τ2w  for the delay τ0  , the variance of the variable w2 is 36% of the 
variance of the sinusoidal signal which transits through the zero value and is additively 
disturbed by noise N(0,σn). 

At the characteristic points ( )τ2w , which are significantly distant from the minimum point 

( )02 τw  for η0 ≥ 3, based on (18): 

 ( ) 022 yww ≈=τ . (25) 

The mean-square value of the variable w2 can be expressed with the following relation: 
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while the variance is: 
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The variance of the variable w2 is the disturbance variance. 
When the values of ± ∆τ  are low in the neighbourhood of the point τ0 which determines 

the minimum of the function ( )τ2w , it is possible to further reduce the relation (21) to the 
following: 
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The expected value is: 

 ( )[ ] ( )0202 ττ wŵE ≈ . (29) 
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The characteristic variance is: 

 ( )[ ] ( ) ( )[ ]{ } ( ) ( ).E
Y

wwŵEŵVar
n

m 4

4

0
2

2

2

020202 τ∆ω
σ

ττττ 







=−= . (30) 

With the distribution model for the deviations ∆τ from τ0 in the form of N(0,σ∆t) the 
following is obtained: 

 ( ) 44 3 τ∆στ∆ =E . (31) 

The relative uncertainty square is: 
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This allows one to calculate the deviation σ∆τ from the following relation: 
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The resulting calculations (22) and (24) also imply that: 
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Taking the expressions (33) and (34) into account gives an approximate theoretical relation 
for the standard deviation of the estimate0τ̂ : 
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It can be proven that the standard deviation of the moment of the sinusoidal signal 
transiting through the zero level (2) and additively disturbed by the noise N(0,σn) is 
formulated as follows: 
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. (36) 

The comparison of the expressions (35) and (36) shows a decrease in the standard 
deviation of the CAAV minimum location by approximately 34%.  

The experimental characteristic of the CAAV is obtained by conditional averaging of 
delayed signal z(t): 
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with the experimental variance for the argument τ0 based on (24) and equal to: 
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where: K is the number of the CAAV values calculated in this point. As for the characteristic 
points which are significantly distant from the minimum point (for η0 ≥ 3): 
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The argument of the minimum of the CAAV characteristic (τ0), allows determination of the 
sought phase shift from the following relation: 

 ωτϕ ⋅−= 0ˆˆ
xy . (40) 

with the standard uncertainty of: 
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3. Practical analysis 
 

The measurements were performed using a laboratory stand equipped with a digital 
generator for sinusoidal voltage signals with input phase shift, random voltage signal 
generators, models of disturbing systems, a data acquisition system with statistical analysis 
software and a digital oscilloscope. The measurements included the analysis of the following 
signals: x(t) (disturbance-free) with the amplitude Xm = 1 V and the frequency fx=100 Hz; and 
the signal z(t) delayed by 1.046(6) rad (and disturbed at the SNR = Xm

2/2σn
2 = 294). The 

signals x(t) and z(t) were sampled with the frequency fp=240 kHz [9].  
Figure 1 presents the runs of the conditional average value characteristics of the delayed 

and noisy signal absolute value (CAAV): both practical and approximated based on the 
expression (28). Both characteristics are consistent in the direct neighborhood of the 
minimum points. 

 
Fig. 1. The characteristics of conditional averaging of absolute value of the delayed signal surrounding its 

minimum. 
 

The relation between the experimental (practical) variance of the CAAV characteristics in 
the minimum neighborhood is presented in Fig. 2. The calculations were based on M = 90 of 
the performance of the conditional averaging of the signal z(t) and K =100 of the CAAV 
characteristic calculations at every point. The sinusoidal signals had the amplitude  
Xm = Ym =1 V, while the standard deviation of the noise was σn = 0,0418 V. The consistency of 
the practical characteristic with the theoretical calculations of values can be observed: 
- In the direct neighborhood of the minimum – expression (38) (lower broken line); 
- At the points significantly distant from the minimum – expression (39) (upper broken line). 
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Fig. 2. The experimental variance of characteristic CAAV close to the minimum. 

 
 
4. Conclusion 
 

The application of conditional averaging of the absolute value of the delayed sinusoidal 
signal disturbed by normal noise allows the variance to be reduced by the characteristic delay 
time τ0  proportional to the phase shift between the signals in relation to the zero-transition 
moment variance of the sinusoidal signal on the same disturbance – using a traditional 
measurement method. 

The precision of the estimate 0τ̂  based on the CAAV characteristic minimum is determined 

by the form (rate of rise) and variance of the characteristic itself. The study shows the 
consistency of the theoretical and practical parameters of the CAAV characteristic at the 
minima. 

The decrease in the variance 2

0τσ ˆ  by 56 % may have  practical use in the measurements of 

voltage phase shifts at infra-low frequencies (for f < 1 Hz) due to the benefit of shortening the 
length of the time for the analysis at the assumed measurement precision. 

Further improvement of the precision of the estimated value 0τ̂   proportional to the 

measured phase shift can be obtained by using a modified method of multi-level conditional 
averaging of the delayed signal absolute value. 
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